
White Paper - Architecture Overview
2005-11-29 Version 0.2 - Martin Bartosch

Introduction
OpenXPKI aims at implement-

ing a complete and flexible Trust-
center and PKI (Public Key Infra-
structure) software that handles the
entire workflow related to request-
ing, creating and delivering X.509
Digital Certificates.

Targeted environments range
from small installations using soft-
ware keys on a single machine to
large scale and high performance
multi-node deployments using en-
terprise class software and hard-
ware, such as Oracle or DB/2 da-
tabases or Hardware Security
Modules.

With strong emphasis on open
standards and interoperability the
system is engineered to be easily
integrable with other standard
compliant IT components.

Building on several years of
experience with implementation,
operation and maintenance in
other PKI Projects, the designers
and developers of OpenXPKI took

the chance of addressing the limita-
tions of existing solutions. In order
to obtain a clean and efficient solu-
tion, OpenXPKI was designed and
engineered almost from scratch.
The primary goal of the redesign
was to create a system that is
highly and easily configurable,
modular and scalable, while still
offering a majority of the features
present in other PKI products.

As OpenXPKI is mainly written
in the Perl programming language,
it naturally takes advantage of the
existing code base available freely
at CPAN (Comprehensive Perl Ar-
chive Network, a public community
repository for Perl modules and
code) and employs many compo-
nents that have been published
there.

This documents describes the
overall design principles and archi-
tecture of the OpenXPKI system as
planned for the initial version 1.0.

System Architecture
Overview

An overview of the system's
architecture is given in figure 1.
Users familiar with other PKI sys-
tems will notice that OpenXPKI
does not distinguish between the
classic PKI components such as RA
(Registration Authority), CA (Cer-
tificate Authority) or User Enroll-
ment Interface.

An OpenXPKI installation will
act as CA, RA or End Entity Enroll-
ment Node depending on its con-
figuration and the logged in user’s
permissions in the system. A logical
separation into online (RA) and
offline (CA) components can of
course still be deployed if desired,
but in this case this is a voluntary
design decision and not a technical
necessity.

System Components
Users and applications using

PKI services access the system by

O
pe
nX
PK
I

The OpenXPKI Foundation
Launched October 2005

The major goal of the OpenXPKI foundation is to support the OpenXPKI commu-
nity to develop free PKI software. The foundation forms the organizational base of
the project and supports the community with management of the project's name,
license and infrastructure. This includes organization of support and promotion
events like workshops and conferences. All structural decisions are made by a
board that is elected in regular intervals by users and developers.

HIGHLY FLEXIBLE
AND SCALABLE
OPEN SOURCE
TRUSTCENTER
SOFTWARE

http://www.openxpki.org

means of an interface implementa-
tion. For end users this will com-
monly be a web interface, adminis-
trators might choose to use a com-
mand line interface, whereas com-
puter systems or network compo-
nents will probably communicate
with OpenXPKI e. g. via the SCEP
protocol (Simple Certificate Enroll-
ment Protocol) which is imple-
mented by the SCEP interface.

It is possible to extend the sys-
tem with additional and independ-
ent interfaces in order to support
other user interfaces, future PKI
standards or proprietary systems.

All interfaces use the common
OpenXPKI Server API that defines
a programming interface for com-
municating with the PKI system. The
Server API itself is implemented by
the OpenXPKI Server which is de-
signed to run as a daemon process
on a Unix system.

This central OpenXPKI Server
process communicates with a XML
Configuration Layer that provides
access to all configuration values
for the system, e. g. CA configura-
tion, process definitions or data-
base configuration parameters.

All events that are processed or
generated by the system are sub-
ject to extensive and configurable
logging and auditing via a sepa-

rate module. The Logging and
Auditing module can log to flat
files, Unix syslog or database ta-
bles.

For the following discussion we
distinguish between static and vari-
able data. Static data includes the
system configuration, process defi-
nition and CA setup, whereas vari-
able data encompasses all stateful
process related data the system

generates and modifies during
normal operation.

All stateful data is stored in a
common database that is the ca-
nonical source for all variable data
within the system. Because there is
no need for storing variable data
within the server's file system, build-
ing a redundant PKI system or a
high-performance cluster of multiple
nodes processing the same set of
data can be achieved very easily.

Backup and restore require-
ments are reduced to a standard
database backup (variable data)
and a backup of the system con-
figuration plus the CA's key mate-
rial (static data).

Modular Design
One major design objective

was to generate a system that is
highly modular, allowing to easily
extend the software with new cryp-

tographic toolkits and algorithms,
database drivers or interface im-
plementations.

All system components that are
inherently stateless are factored out
of the OpenXPKI Server into stand-
alone Perl modules that, following
CPAN’s code reuse philosophy,
could also be used in other applica-
tions. Only those parts that actually
glue the server components to-

gether and handle variable
system data kept in the
database are subsumed
under the OpenXPKI Server
module.
Ever y component of
OpenXPKI, including the
server, is distributed in a
hierarchy of Perl modules.
When deploying the system
to an actual OpenXPKI
instance this means that
OpenXPKI will be installed
just like other Perl modules;
only the startup scripts and
configuration will have to
be installed separately,
allowing for a very simple
and easily understandable
deployment process.
A large set of atomic base
functions and cryptographic
or PKI related building

blocks are encapsulated in mod-
ules, hence extension of the system
with new functionality, protocols,
algorithms or data formats is easily
possible by reusing the existing
module. This leads to increased
maintainability without running the
risk of affecting the rest of the sys-
tem when applying modifications.

More complex operations bas-
ing on these atomic functions are
cleanly separated in Server Com-
mands, which have access to state
information or objects stored in the
database by means of a caller con-
text that is maintained by the Work-
flow Engine.

Workflow Integration
A key feature of OpenXPKI is

the complete separation of process
logic from implementation details.
To achieve this, OpenXPKI adopts

2

Figure 1

OpenXPKI Server

Database Layer

Oracle MySQL Postgresql SQLite

Cryptographic Layer

OpenSSL

XML
Configuration

Layer

Common Config

Logging and
Auditing

Workflow Engine

Server::Workflow

OpenXPKI Server API

Interfaces

Web Frontend

Workflow Interfaces

Server::Command

Session Layer

Server::Session

Authentication

Server::Authentication

DB2

Authorization

Server::AuthorizationCmd ...

...

Cmd

CA Config

Process Definition

......

Command Line SCEP OCSP

the semantics of commonly known
Business Process Modeling tech-
niques:

All PKI related operations are
completely handled and monitored
by a Workflow Engine. On startup
the OpenXPKI system reads all
defined process definitions, caches
them in memory and builds a proc-
ess repository from this data that is
accessed by the Workflow Engine
during runtime.

The system allows for separate
definition of distinct processes that
describe a complete set of activities
such as certificate request process-
ing, certificate revocation, key gen-
eration or data publication.

Each submitted (or automati-
cally generated) request triggers
the creation of a corresponding
Workflow Instance by the Workflow
Factory component.

By operating on this Workflow
Instance the Workflow Engine
tracks the state of the linked objects
(e. g. request data). The Workflow
Instance itself is persistently stored
in the database and not only refer-
ences all internal data objects re-
quired for processing the request
(e. g. certificate request data) but
also includes the complete modifi-
cation history of this instance.

The Workflow Engine periodi-
cally monitors all active Workflow
Instances and acts according to
possible transitions that are possi-
ble to the actual state a distinct
Workflow Instance has.

In other words the Workflow
Instance itself bears and maintains
the information about actions and
transitions that are actually possible
with it, while the Workflow Engine
invokes the necessary activities.

Throughout the whole life time
of the Workflow Instance it is possi-
ble to obtain all workflow related
information by querying the Work-
flow Engine about the object. This
includes all operations that can be
performed on the Instance object in
its current state. This information
directly influences the interface rep-
resentation of the object and hence
only displays operations that are

sensible and actually executable
for a user working with the object.

For example, a Certificate Re-
quest that has not yet been ap-
proved by a Registration Officer
may still be modified. After refer-
encing the Process Repository
about the possible transitions from
this state the Workflow Instance will
thus indicate that "edit" is a valid
operation on this particular object
in addition to the "approve" action.
The web interface will obtain this
information from the Workflow
Instance and accordingly display
"edit" and "approve" buttons for
this particular object.

Process Modeling
 Just like the rest of the system

configuration the Process Definition
is stored in a XML format proprie-
tary to OpenXPKI. This "non-
standard" representation was cho-
sen because it is tailored for the use
within OpenXPKI and only contains
the necessary elements to model its
processes. The resulting main ad-
vantage is that OpenXPKI Processes
can be defined with simple tools
(like a text or XML editor) that are
readily available for anyone with-
out requiring expensive closed
source modeling tools.

For a quick start OpenXPKI will
ship with a set of base Process
Definitions sufficient for small to
medium scale implementations. By
modifying these base definitions
implementers can easily adapt the
system to their needs.

Relations to External Busi-
ness Process Modeling
Software

The obvious disadvantage of
using a proprietary process defini-
tion dialect is that interfacing with
professional BPM software be-
comes more difficult.

As of this writing a number of
process modeling dialects compete
on the market, and as currently
there is no agreed standard format
of representing business logic, a
simple and straightforward repre-
sentation was chosen in favor of

heavy weight standards like XPDL
or BPML (which are hard to read
and nearly impossible to compose
manually).

However, in a future version
support of external business proc-
ess modeling tools that export
Workflow process definitions in file
formats such as XPDL (XML Process
Definition Language), BPML (Busi-
ness Process Modeling Language)
or the ARIS (Architecture of Inte-
grated Information Systems) XML
format. This could be added via an
XSLT processor that understands
these industry standard dialects
and transforms them into the
OpenXPKI representation.

XML Configuration
All static configuration of the

OpenXPKI system is contained in a
set of XML files that not only de-
scribes normal system configuration
such as database setup, authentica-
tion methods, directory service
support and of course CA defini-
tions, but also includes a complete
description of the PKI related work-
flows (process definitions).

As the configuration engine
supports XInclude, the user can
decide whether to distribute the
configuration across multiple files
or to place all configuration in one
single XML file.

For the entire XML configura-
tion an XML Schema is supplied
that allows for reliable verification
of an actual configuration set.

In its first release the XML con-
figuration will be read-only for the
OpenXPKI system. All changes to
the configuration must be done
manually by the administrators in
an editor. In future versions a con-
figuration editor (e. g. a web fron-
tend) may be added to the system,
allowing to change configuration
settings and write back the modi-
fied configuration (if allowed by
policy settings).

During startup the server proc-
ess reads the configuration files
and caches the information
throughout the lifetime of the server
process. Queries to configuration

3

will then be answered from an in-
memory cache.

Configuration Inheritance
For most OpenXPKI installations

beyond very simple demonstration
setups the configuration will almost
certainly require duplication of lo-
cal configuration settings, such as
CA token configuration or CA pro-
file settings.

Configuration redundancy be-
ing one weak point of some of
OpenXPKI's competitors, this short-
coming was addressed by introduc-
ing a powerful configuration inheri-
tance scheme, allowing to inherit
entire XML subtrees from another
location in the XML configuration
tree.

This key feature will ease initial
configuration substantially, as the
system will be distributed with a set
of default configuration settings
defining a very basic PKI installa-
tion.

Starting with the base (or de-
fault) configuration the user can
then successively add local modifi-
cations that overwrite or extend
inherited values from the default
configuration.

As the local modifications are
kept closely together in the inher-
ited subtree, it is immediately visible
which settings were changed re-
lated to the default values.

The inheritance feature will also
prove extremely convenient not
only for initial configuration but
actually for maintenance and ex-
tension of productive systems.

It will no longer be necessary
to cut & paste entire configuration
sections to create a new issuing
CA, but instead it will be sufficient
to create a new subtree that simply
inherits from the predecessor CA,
only changing the necessary values
such as CA certificate and key. By
adding just a few lines of configura-
tion whole system components can
be extended with a fully working
but slightly derivative version of the
parent configuration.

As an actual OpenXPKI installa-
tion ages over time, maintainers will
find this feature extremely useful as

it reduces the differences between
configuration revisions substantially
and reduces the amount of configu-
ration that must be reviewed by the
administrator.

Inheritance also greatly simpli-
fies global configuration of com-
plex systems. For an installation
using a larger number of CA in-
stances that all inherit from a com-
mon default configuration, it is
extremely easy to modify the defini-
tions throughout all configured CAs
simply by changing the correspond-
ing values in the default configura-
tion.

PKI Features and Im-
plementation
Multi-CA Support via PKI
Realms

An OpenXPKI installation may
provide one or more externally
visible (i. e. via an Interface) CA
instances or PKI Realms as shown in
figure 2.

A PKI Realm encompasses a
complete PKI configuration set,
including CA certificate, key, LDAP
directory, Authentication, Authori-
zation etc.

All PKI Realms can share the
same database and are distin-
guished by the software on data-
base row level.

Each PKI Realm may consist of
an arbitrary number (zero or more)
of issuing CAs. All these CAs
should be capable of issuing certifi-
cates for the namespace defined by

the PKI Realm. All CAs in a PKI
Realm will usually use the same
Certificate Profile and very similar
configuration, but this is neither
mandatory nor technically enforced
by the OpenXPKI system. In par-
ticular, each CA uses its own CA
certificate and private key.

A unique PKI Realm Identifier is
assigned to each PKI Realm that is
used to distinguish between the
individual PKIs.

Since each PKI Realm provides
its own independent name space in
terms of profile, common name,
serial number, access control etc.,
this makes it possible to run differ-
ent and completely independent
CAs in one single installation with-
out having to install multiple pro-
gram installations.

Selection between instances for
end users and administrator staff is
delegated to either the web server
running the CA installation (e. g. by
using different URLs or port num-
bers for instance distinction) or al-
ternatively may be performed by a
selection mechanism on the PKI
login screen.

Automatic CA Rollover
When reaching the end of a

CA certificate lifetime there is a
certain point in time after which no
usable end entity certificates can be
issued whose desired validity fully
fits into the CA certificates validity.

To address this problem an
automated CA Rollover is imple-
mented. The basic idea is to have
multiple issuing CAs (with overlap-

4

Figure 2

Employee CA 2

Employee CA 1

Server CA 2

Server CA 1

Customer CA 2

Customer CA 1

OpenXPKI Server

Issuing CAs

PKI Realms Employee CA Server CA Customer CA

ping certificate validity) that are
logically responsible for the same
set of end entity certificates.

OpenXPKI will automatically
detect which CA to use for a given
operation and use this CA to proc-
ess the request.

On startup the OpenXPKI
server examines all PKI Realms that
are configured. For each PKI Realm
OpenXPKI determines which issuing
CAs belong to this CA instance and
analyzes the corresponding CA
certificate. The validity information
of each CA certificate is stored
internally for later use by the CA
request dispatcher.

In order to make CA rollover
work, administrators must make
sure that an issuing CA exists that is
capable of taking over the certifi-
cate issuance duties of the expiring
issuing CA. If no Rollover CA exists,
the CA system will not be able to
find a suitable candidate CA for the
requested operation and will stop
working after the last active issuing
CA exceeds a certain point in time
after which it is not possible to issue
end entity certificates with the re-
quired validity.

By using the automatic CA
rollover feature it is possible to run
an OpenXPKI installation without
having to redeploy the system due
to expiring CA certificates.

Modular Cryptographic
Backend Support

Among Open Source projects
OpenSSL is probably the most
popular and advanced crypto-
graphic toolkit, and hence
OpenXPKI uses OpenSSL as its
primary Cryptographic backend. In
order to decouple cryptographic
operations from implementation,
the OpenXPKI system uses an ab-
straction layer that allows to re-
place the underlying cryptographic
toolkit with alternative crypto-
graphic backend implementations.

Hardware Security Module
Support

In order to make the OpenXPKI
system usable in high-security envi-

ronments (such as Trustcenter instal-
lations), the software supports
Hardware Security Modules in the
cryptographic backend modules for
protection of key material.

Hardware support will be in-
cluded for nCipher nShield and
Safenet LunaCA Hardware Security
Modules and will also include
SmartCard based environments via
the OpenSC project.

Infrastructure and
Interoperability
Database Support

OpenXPKI requires a relational
database for data storage. In order
to abstract from implementation
differences, OpenXPKI provides a
database abstraction layer that will
include drivers for MySQL, Post-
greSQL, Oracle and DB/2.

 Adding support for additional
databases is possible by writing a
driver for the required database
engine.

Strictly limited for demonstra-
tion and for test purposes only the
self-contained (i. e. not requiring a
DBMS server engine) low profile
SQLite database engine is sup-
ported as well by the system.

Multi-Node Capability
OpenXPKI will support distrib-

uted architectures where PKI tasks
are split regionally (e. g. via local
Registration Authorities) or func-
tionally (e. g. separation of enroll-
ment interface, registration inter-
face and CA operations).

Functional separation in offline
components (CA operations) in-
creases security by making it im-
possible to attack the CA via the
network. However, when using an
offline CA it is necessary to ex-
change data between public fron-
tend, registration authority and CA.

By encapsulating PKI data ob-
jects in Workflow Instances that
transport their own state, the Work-
flow Engine contributes greatly to
making this task possible and reli-
able. Synchronization of distributed
nodes not sharing the same data-

base will be achieved by exchang-
ing the Workflow Instance informa-
tion and the referenced data ob-
jects.

Performance and Cluster-
ing

Even with high performance
server hardware and Hardware
Security Module support there will
be an upper limit for the achievable
certificate issuance rate. Although it
is possible to parallelize many op-
erations in the process, this will still
not be sufficient for environments
where a high number of certificates
must be created within a certain
time frame.

On the other hand, critical en-
vironments may require redun-
dancy for maintaining a high level
of availability.

Both requirements will be ad-
dressed by a feature that automati-
cally distributes workload between
distinct machines of a multi-node
cluster setup. The main prerequisite
for this to work is a shared data-
base that can be accessed by all
cluster nodes. (For high-availability
setups this means that the shared
database must be redundant and
highly available as well, which is
easily possible with standard fea-
tures offered by enterprise scale
databases such as Oracle or DB/
2.)

 If a number of machines are
configured to work together as a
cluster, these systems automatically
negotiate and designate a cluster
manager node that takes the role
of distributing workload packages
to all cluster worker nodes. The
cluster manager node itself will also
assume a worker node role in addi-
tion to managing the cluster (unless
explicitly configured to only act as
manager).

If a worker node fails the man-
ager node detects this condition
and redistributes the remaining
workload of the failed machine
among the remaining nodes.

Should the cluster manager
node fail for some reason, the
worker nodes will detect this after a

5

timeout period and re-negotiate a
new manager node among the
remaining systems.

Adding a new node is as easy
as setting up the hardware, install-
ing the software and the common
configuration and adding the sys-
tem to the network. The new node
will automatically be integrated into
the cluster by the manager node.

As there is no upper limit of
cluster nodes, the OpenXPKI system
will scale extremely well. To com-
pensate for higher throughput de-
mands it will suffice to simply add
more nodes to the cluster.

Internationalization and
UTF-8 Support

OpenXPKI is designed to be
multi-lingual from ground up. This
does not only mean that the pri-
mary user interface (the web inter-
face) will be available in several
translations, but includes the fact
that all internal data handled by
OpenXPKI is fully UTF-8 compliant.
As a result, request data or gener-
ated certificate may include text
with characters from literally any
living human language in the
world.

Authentication and
Authorization Framework

Authentication and authoriza-
tion is separated from the process
logic and is implemented in a
modular and extensible approach.

Both authentication and
authorization can be handled in-
ternally (for smaller or stand-alone
installations), but for integration in
existing infrastructures interfaces
for external authentication and
authorization methods are pro-
vided.

External authentication meth-
ods include LDAP and Unix PAM
(Pluggable Authentication Mod-
ules).

Authentication methods can be
stacked, i. e. an authentication re-
quest is sequentially checked
against several authentication sys-
tems, making it possible to integrate

multiple authentication systems used
in the target environment.

Authorization will primarily be
supported via LDAP, but additional
methods can be added if neces-
sary.

Logging and Auditing
Logging and auditing is an

important feature of security sensi-
tive software. OpenXPKI abstracts
all logging operations via a stan-
dard Perl module that allows con-
figurable logging targets (including
Unix syslog, database or flat files).

A complete audit trail for object
manipulation is available via the
system log and the individual Work-
flow Instance history that keeps
track of each operation performed
on a certain Workflow Instance.

For each CA private key opera-
tion the audit system maintains a
usage counter in the database that
is incremented for each use. If sup-
ported by the underlying crypto-
graphic tokens (certain Hardware
Security Modules provide a private
key counter feature implemented in
the system f irmware), the
OpenXPKI auditing system will
compare the private key counter
stored in the database with the
HSM's (Hardware Security Module)
private key counter.

If the expected private key
counter does not match with the
counter value obtained from the
HSM, the audit system will raise an
alarm via the monitoring system
that a potential private key abuse
has been detected.

Monitoring Integration
Monitoring systems can be

integrated via a plugin mechanism
that is based on hooks that are
called for certain events by the
OpenXPKI system. Hence, a moni-
toring integration can be imple-
mented easily via a set of shell
scripts that act upon certain events
or may comprise integration into
professional Monitoring systems
such as Tivoli or HP OpenView.

A future release of the
OpenXPKI system will natively sup-
port at least one Open Source

Monitoring solution, most probably
Nagios, and it will also include a
module that will be able to gener-
ate SNMP (Simple Network Man-
agement Protocol) traps.

The Way Ahead
Although the system architec-

ture outlined in this document is a
very ambitious project, the devel-
opers are confident that a first beta
version of the system will be ready
by end of Q1 2006. This first ver-
sion will include most of the fea-
tures mentioned in this document.

A first stable release is planned
for end of Q2 2006.

Resources

Primary Website
http://www.openxpki.org

Development Resources
http://developer.berlios.de/projects/
openxpki/

Mailing Lists
Users Mailing List:
https://lists.berlios.de/mailman/listinf
o/openxpki-users

Developer Mailing List:
https://lists.berlios.de/mailman/listinf
o/openxpki-devel

6

